Cardinal Invariants and the P-Ideal Dichotomy

Jeff Serbus

University of Freiburg

January 2013

Jeff Serbus (University of Freiburg)

Cardinal Invariants and the PID

January 2013 1 / 21

A Gentle Introduction

 For f, g ∈ ω^ω we say f <* g if there is some n ∈ ω such that for every k ≥ n, f(k) < g(k).

• Let $\chi(f,g)$ be the minimum *n* for which the above statement holds.

Do we need a reminder of \mathfrak{b} and \mathfrak{d} ?

Definition (P-ideal)

A *P-ideal* is an ideal \mathcal{I} of subsets of some set X such that if $\{A_i : i \in \omega\} \subseteq \mathcal{I}$, then there is some $A \in \mathcal{I}$ such that for each $i \in \omega$, $A_i \subseteq^* A$. (i.e. $A_i \setminus A$ is finite).

- For f, g ∈ ω^ω we say f <* g if there is some n ∈ ω such that for every k ≥ n, f(k) < g(k).
- Let $\chi(f,g)$ be the minimum *n* for which the above statement holds.

Do we need a reminder of b and ∂ ?

Definition (P-ideal)

A *P-ideal* is an ideal \mathcal{I} of subsets of some set X such that if $\{A_i : i \in \omega\} \subseteq \mathcal{I}$, then there is some $A \in \mathcal{I}$ such that for each $i \in \omega$, $A_i \subseteq * A$. (i.e. $A_i \setminus A$ is finite).

- For f, g ∈ ω^ω we say f <* g if there is some n ∈ ω such that for every k ≥ n, f(k) < g(k).
- Let $\chi(f,g)$ be the minimum *n* for which the above statement holds.

Do we need a reminder of \mathfrak{b} and \mathfrak{d} ?

Definition (P-ideal)

A *P-ideal* is an ideal \mathcal{I} of subsets of some set X such that if $\{A_i : i \in \omega\} \subseteq \mathcal{I}$, then there is some $A \in \mathcal{I}$ such that for each $i \in \omega$, $A_i \subseteq * A$. (i.e. $A_i \setminus A$ is finite).

- For f, g ∈ ω^ω we say f <* g if there is some n ∈ ω such that for every k ≥ n, f(k) < g(k).
- Let $\chi(f,g)$ be the minimum *n* for which the above statement holds.

Do we need a reminder of \mathfrak{b} and \mathfrak{d} ?

Definition (P-ideal)

A *P-ideal* is an ideal \mathcal{I} of subsets of some set X such that if $\{A_i : i \in \omega\} \subseteq \mathcal{I}$, then there is some $A \in \mathcal{I}$ such that for each $i \in \omega$, $A_i \subseteq^* A$. (i.e. $A_i \setminus A$ is finite).

- Suppose $\mathfrak{b} < \mathfrak{d}$
- Let $\langle f_{\alpha} : \alpha \in \mathfrak{b} \rangle$ be an increasing unbounded sequence in $(\omega^{\omega}, \leq^*)$.
- It is **not** cofinal, so there is some $f \in \omega^{\omega}$ such that for all $\alpha \in \mathfrak{b}$, $f \nleq^* f_{\alpha}$.
- Let $b_{\alpha} := \{n \in \omega : f(n) < f_{\alpha}(n)\}$
- Let I be the ideal generated by $\{b_{\alpha} : \alpha \in \mathfrak{b}\}.$
- Then for $\alpha < \beta$ it follows from $f_{\alpha} \leq^* f_{\beta}$ that $b_{\alpha} \subseteq^* b_{\beta}$.
- \bullet It follows that ${\mathcal I}$ is a P-ideal.

- Suppose $\mathfrak{b} < \mathfrak{d}$
- Let $\langle f_{\alpha} : \alpha \in \mathfrak{b} \rangle$ be an increasing unbounded sequence in $(\omega^{\omega}, \leq^*)$.
- It is **not** cofinal, so there is some $f \in \omega^{\omega}$ such that for all $\alpha \in \mathfrak{b}$, $f \nleq^* f_{\alpha}$.
- Let $b_{\alpha} := \{n \in \omega : f(n) < f_{\alpha}(n)\}$
- Let I be the ideal generated by $\{b_{\alpha} : \alpha \in \mathfrak{b}\}.$
- Then for $\alpha < \beta$ it follows from $f_{\alpha} \leq^* f_{\beta}$ that $b_{\alpha} \subseteq^* b_{\beta}$.
- \bullet It follows that ${\mathcal I}$ is a P-ideal.

- Suppose $\mathfrak{b} < \mathfrak{d}$
- Let $\langle f_{\alpha} : \alpha \in \mathfrak{b} \rangle$ be an increasing unbounded sequence in $(\omega^{\omega}, \leq^*)$.
- It is **not** cofinal, so there is some $f \in \omega^{\omega}$ such that for all $\alpha \in \mathfrak{b}$, $f \nleq^* f_{\alpha}$.
- Let $b_{\alpha} := \{n \in \omega : f(n) < f_{\alpha}(n)\}$
- Let I be the ideal generated by $\{b_{\alpha} : \alpha \in \mathfrak{b}\}.$
- Then for $\alpha < \beta$ it follows from $f_{\alpha} \leq^* f_{\beta}$ that $b_{\alpha} \subseteq^* b_{\beta}$.
- \bullet It follows that ${\mathcal I}$ is a P-ideal.

- Suppose $\mathfrak{b} < \mathfrak{d}$
- Let $\langle f_{\alpha} : \alpha \in \mathfrak{b} \rangle$ be an increasing unbounded sequence in $(\omega^{\omega}, \leq^*)$.
- It is **not** cofinal, so there is some $f \in \omega^{\omega}$ such that for all $\alpha \in \mathfrak{b}$, $f \nleq^* f_{\alpha}$.
- Let $b_{\alpha} := \{n \in \omega : f(n) < f_{\alpha}(n)\}$
- Let I be the ideal generated by $\{b_{\alpha} : \alpha \in \mathfrak{b}\}.$
- Then for $\alpha < \beta$ it follows from $f_{\alpha} \leq^* f_{\beta}$ that $b_{\alpha} \subseteq^* b_{\beta}$.
- \bullet It follows that ${\mathcal I}$ is a P-ideal.

- Suppose $\mathfrak{b} < \mathfrak{d}$
- Let $\langle f_{\alpha} : \alpha \in \mathfrak{b} \rangle$ be an increasing unbounded sequence in $(\omega^{\omega}, \leq^*)$.
- It is **not** cofinal, so there is some $f \in \omega^{\omega}$ such that for all $\alpha \in \mathfrak{b}$, $f \nleq^* f_{\alpha}$.
- Let $b_{\alpha} := \{n \in \omega : f(n) < f_{\alpha}(n)\}$
- Let I be the ideal generated by $\{b_{\alpha} : \alpha \in \mathfrak{b}\}.$
- Then for $\alpha < \beta$ it follows from $f_{\alpha} \leq^* f_{\beta}$ that $b_{\alpha} \subseteq^* b_{\beta}$.
- It follows that ${\mathcal I}$ is a P-ideal.

- Suppose $\mathfrak{b} < \mathfrak{d}$
- Let $\langle f_{\alpha} : \alpha \in \mathfrak{b} \rangle$ be an increasing unbounded sequence in $(\omega^{\omega}, \leq^*)$.
- It is **not** cofinal, so there is some $f \in \omega^{\omega}$ such that for all $\alpha \in \mathfrak{b}$, $f \nleq^* f_{\alpha}$.
- Let $b_{\alpha} := \{n \in \omega : f(n) < f_{\alpha}(n)\}$
- Let I be the ideal generated by $\{b_{\alpha} : \alpha \in \mathfrak{b}\}.$
- Then for $\alpha < \beta$ it follows from $f_{\alpha} \leq^* f_{\beta}$ that $b_{\alpha} \subseteq^* b_{\beta}$.
- It follows that ${\mathcal I}$ is a P-ideal.

- Suppose $\mathfrak{b} < \mathfrak{d}$
- Let $\langle f_{\alpha} : \alpha \in \mathfrak{b} \rangle$ be an increasing unbounded sequence in $(\omega^{\omega}, \leq^*)$.
- It is **not** cofinal, so there is some $f \in \omega^{\omega}$ such that for all $\alpha \in \mathfrak{b}$, $f \nleq^* f_{\alpha}$.
- Let $b_{\alpha} := \{n \in \omega : f(n) < f_{\alpha}(n)\}$
- Let I be the ideal generated by $\{b_{\alpha} : \alpha \in \mathfrak{b}\}.$
- Then for $\alpha < \beta$ it follows from $f_{\alpha} \leq^* f_{\beta}$ that $b_{\alpha} \subseteq^* b_{\beta}$.
- It follows that ${\mathcal I}$ is a P-ideal.

Definition (The P-ideal Dichotomy (PID))

The *P-ideal dichotomy* is the following statement:

For every P-ideal $\mathcal I$ of countable subsets of some uncountable set S, either

- **1** there is an uncountable $A \subseteq S$ such that $[A]^{\omega} \subseteq \mathcal{I}$, or
- **2** S can be decomposed into countably many sets orthogonal to \mathcal{I} .

Gaps and P-ideals

ም.

Definition (Gaps)

• A sequence $\langle \{f_{\alpha} : \alpha \in \kappa\}, \{g_{\beta} : \beta \in \lambda\} \rangle$ is a *pregap* if $f_{\alpha_1} <^* f_{\alpha_2} <^* g_{\beta_2} <^* g_{\beta_1}$ for all $\alpha_1 < \alpha_2 < \kappa$ and all $\beta_1 < \beta_2 < \lambda$.

• A pregap as defined above is a (unfilled) gap if there is no such $h \in \omega^{\omega}$ such that $f_{\alpha} <^* h <^* g_{\beta}$ for all $\alpha \in \kappa$ and all $\beta \in \lambda$.

Example (A P-ideal from a gap)

Let $\langle \{f_{\alpha} : \alpha \in \kappa\}, \{g_{\beta} : \beta \in \lambda\} \rangle$ be a (unfilled) gap, where κ and λ are regular and uncountable. Then define the ideal $\mathcal{I} \subseteq [\kappa]^{\omega}$ by the following. $A \in \mathcal{I}$ if and only if there exists an $\beta \in \lambda$ such that for all $n \in \omega$ the set

$$\{\alpha \in A : \chi(f_\alpha, g_\beta) < n\}$$

is finite.

Definition (Gaps)

- A sequence $\langle \{f_{\alpha} : \alpha \in \kappa\}, \{g_{\beta} : \beta \in \lambda\} \rangle$ is a *pregap* if $f_{\alpha_1} <^* f_{\alpha_2} <^* g_{\beta_2} <^* g_{\beta_1}$ for all $\alpha_1 < \alpha_2 < \kappa$ and all $\beta_1 < \beta_2 < \lambda$.
- A pregap as defined above is a (unfilled) gap if there is no such $h \in \omega^{\omega}$ such that $f_{\alpha} <^* h <^* g_{\beta}$ for all $\alpha \in \kappa$ and all $\beta \in \lambda$.

Example (A P-ideal from a gap)

Let $\langle \{f_{\alpha} : \alpha \in \kappa\}, \{g_{\beta} : \beta \in \lambda\} \rangle$ be a (unfilled) gap, where κ and λ are regular and uncountable. Then define the ideal $\mathcal{I} \subseteq [\kappa]^{\omega}$ by the following. $A \in \mathcal{I}$ if and only if there exists an $\beta \in \lambda$ such that for all $n \in \omega$ the set

$$\{\alpha \in A : \chi(f_{\alpha}, g_{\beta}) < n\}$$

is finite.

(日) (同) (三) (三)

Definition (Gaps)

- A sequence $\langle \{f_{\alpha} : \alpha \in \kappa\}, \{g_{\beta} : \beta \in \lambda\} \rangle$ is a *pregap* if $f_{\alpha_1} <^* f_{\alpha_2} <^* g_{\beta_2} <^* g_{\beta_1}$ for all $\alpha_1 < \alpha_2 < \kappa$ and all $\beta_1 < \beta_2 < \lambda$.
- A pregap as defined above is a (unfilled) gap if there is no such $h \in \omega^{\omega}$ such that $f_{\alpha} <^* h <^* g_{\beta}$ for all $\alpha \in \kappa$ and all $\beta \in \lambda$.

Example (A P-ideal from a gap)

Let $\langle \{f_{\alpha} : \alpha \in \kappa\}, \{g_{\beta} : \beta \in \lambda\} \rangle$ be a (unfilled) gap, where κ and λ are regular and uncountable. Then define the ideal $\mathcal{I} \subseteq [\kappa]^{\omega}$ by the following. $A \in \mathcal{I}$ if and only if there exists an $\beta \in \lambda$ such that for all $n \in \omega$ the set

$$\{\alpha \in \mathsf{A} : \chi(f_\alpha, g_\beta) < \mathsf{n}\}\$$

is finite.

イロト イ押ト イヨト イヨト

$A \in \mathcal{I} \subseteq [\kappa]^{\omega} \iff \exists \beta \ \forall n \ \{ \alpha \in A : \chi(f_{\alpha}, g_{\beta}) < n \}$ is finite

Proof that \mathcal{I} is a P-ideal.

- Suppose $\{A_i : i \in \omega\} \subseteq \mathcal{I}$ has witnesses $\{g_{\beta_i} : i \in \omega\}$.
- Let $\beta := \sup\{\beta_i : i \in \omega\}$.
- Notice $\{\alpha \in A_i : \chi(f_\alpha, g_\beta) < n\}$
 - $\subseteq \{\alpha \in A_i : \chi(f_\alpha, g_{\beta_i}) < \max\{n, \chi(g_\beta, g_{\beta_i})\}\}.$
- Define $A'_i := A_i \setminus \{ \alpha \in A_i : \chi(f_\alpha, g_\beta) < i \}.$
- Define $A := \bigcup_{i \in \omega} A'_i$.
- We claim $A_i \subseteq^* A$ for all *i*, and $A \in \mathcal{I}$.

$$A \in \mathcal{I} \subseteq [\kappa]^{\omega} \iff \exists \beta \ \forall n \ \{ \alpha \in A : \chi(f_{\alpha}, g_{\beta}) < n \}$$
 is finite

Proof that \mathcal{I} is a P-ideal.

- Suppose $\{A_i : i \in \omega\} \subseteq \mathcal{I}$ has witnesses $\{g_{\beta_i} : i \in \omega\}$.
- Let $\beta := \sup\{\beta_i : i \in \omega\}.$
- Notice $\{\alpha \in A_i : \chi(f_\alpha, g_\beta) < n\}$ $\subseteq \{\alpha \in A_i : \chi(f_\alpha, g_{\beta_i}) < \max\{n, \chi(g_\beta, g_{\beta_i})\}\}$
- Define $A'_i := A_i \setminus \{ \alpha \in A_i : \chi(f_\alpha, g_\beta) < i \}.$
- Define $A := \bigcup_{i \in \omega} A'_i$.
- We claim $A_i \subseteq^* A$ for all *i*, and $A \in \mathcal{I}$.

$$A \in \mathcal{I} \subseteq [\kappa]^{\omega} \iff \exists \beta \ \forall n \ \{ \alpha \in A : \chi(f_{\alpha}, g_{\beta}) < n \}$$
 is finite

Proof that \mathcal{I} is a P-ideal.

• Suppose $\{A_i : i \in \omega\} \subseteq \mathcal{I}$ has witnesses $\{g_{\beta_i} : i \in \omega\}$.

• Let
$$\beta := \sup\{\beta_i : i \in \omega\}.$$

• Notice $\{\alpha \in A_i : \chi(f_\alpha, g_\beta) < n\}$ $\subseteq \{\alpha \in A_i : \chi(f_\alpha, g_{\beta_i}) < \max\{n, \chi(g_\beta, g_{\beta_i})\}\}$

- Define $A'_i := A_i \setminus \{ \alpha \in A_i : \chi(f_\alpha, g_\beta) < i \}.$
- Define $A := \bigcup_{i \in \omega} A'_i$.
- We claim $A_i \subseteq^* A$ for all *i*, and $A \in \mathcal{I}$.

$$A \in \mathcal{I} \subseteq [\kappa]^{\omega} \iff \exists \beta \ \forall n \ \{ \alpha \in A : \chi(f_{\alpha}, g_{\beta}) < n \}$$
 is finite

Proof that \mathcal{I} is a P-ideal.

• Suppose $\{A_i : i \in \omega\} \subseteq \mathcal{I}$ has witnesses $\{g_{\beta_i} : i \in \omega\}$.

• Let
$$\beta := \sup\{\beta_i : i \in \omega\}$$
.

- Notice $\{\alpha \in A_i : \chi(f_\alpha, g_\beta) < n\}$ $\subseteq \{\alpha \in A_i : \chi(f_\alpha, g_{\beta_i}) < \max\{n, \chi(g_\beta, g_{\beta_i})\}\}.$
- Define $A'_i := A_i \setminus \{ \alpha \in A_i : \chi(f_\alpha, g_\beta) < i \}.$
- Define $A := \bigcup_{i \in \omega} A'_i$.
- We claim $A_i \subseteq^* A$ for all *i*, and $A \in \mathcal{I}$.

$$A \in \mathcal{I} \subseteq [\kappa]^{\omega} \iff \exists \beta \ \forall n \ \{ \alpha \in A : \chi(f_{\alpha}, g_{\beta}) < n \}$$
 is finite

Proof that \mathcal{I} is a P-ideal.

• Suppose $\{A_i : i \in \omega\} \subseteq \mathcal{I}$ has witnesses $\{g_{\beta_i} : i \in \omega\}$.

• Let
$$\beta := \sup\{\beta_i : i \in \omega\}$$

• Notice $\{\alpha \in A_i : \chi(f_\alpha, g_\beta) < n\}$ $\subseteq \{\alpha \in A_i : \chi(f_\alpha, g_{\beta_i}) < \max\{n, \chi(g_\beta, g_{\beta_i})\}\}.$

• Define
$$A'_i := A_i \setminus \{ \alpha \in A_i : \chi(f_\alpha, g_\beta) < i \}.$$

• Define $A := \bigcup_{i \in \omega} A'_i$.

• We claim
$$A_i \subseteq^* A$$
 for all *i*, and $A \in \mathcal{I}$.

$$A \in \mathcal{I} \subseteq [\kappa]^{\omega} \iff \exists \beta \ \forall n \ \{ \alpha \in A : \chi(f_{\alpha}, g_{\beta}) < n \}$$
 is finite

Proof that \mathcal{I} is a P-ideal.

• Suppose $\{A_i : i \in \omega\} \subseteq \mathcal{I}$ has witnesses $\{g_{\beta_i} : i \in \omega\}$.

• Let
$$\beta := \sup\{\beta_i : i \in \omega\}$$
.

• Notice $\{\alpha \in A_i : \chi(f_\alpha, g_\beta) < n\}$ $\subseteq \{\alpha \in A_i : \chi(f_\alpha, g_{\beta_i}) < \max\{n, \chi(g_\beta, g_{\beta_i})\}\}.$

• Define
$$A'_i := A_i \setminus \{ \alpha \in A_i : \chi(f_\alpha, g_\beta) < i \}.$$

• Define $A := \bigcup_{i \in \omega} A'_i$.

• We claim
$$A_i \subseteq^* A$$
 for all i , and $A \in \mathcal{I}$.

$$A \in \mathcal{I} \subseteq [\kappa]^{\omega} \iff \exists \beta \ \forall n \ \{ \alpha \in A : \chi(f_{\alpha}, g_{\beta}) < n \}$$
 is finite

Proof that \mathcal{I} is a P-ideal.

• Suppose $\{A_i : i \in \omega\} \subseteq \mathcal{I}$ has witnesses $\{g_{\beta_i} : i \in \omega\}$.

• Let
$$\beta := \sup\{\beta_i : i \in \omega\}$$
.

• Notice $\{\alpha \in A_i : \chi(f_\alpha, g_\beta) < n\}$ $\subseteq \{\alpha \in A_i : \chi(f_\alpha, g_{\beta_i}) < \max\{n, \chi(g_\beta, g_{\beta_i})\}\}.$

• Define
$$A'_i := A_i \setminus \{ \alpha \in A_i : \chi(f_\alpha, g_\beta) < i \}.$$

• Define $A := \bigcup_{i \in \omega} A'_i$.

• We claim
$$A_i \subseteq^* A$$
 for all *i*, and $A \in \mathcal{I}$.

$$A \in \mathcal{I} \subseteq [\kappa]^{\omega} \iff \exists \beta \ \forall n \ \{ \alpha \in A : \chi(f_{\alpha}, g_{\beta}) < n \}$$
 is finite

Lemma

Applying the PID to this ideal gives us that $\kappa = \lambda = \aleph_1$.

•
$$S := \{ \alpha_{\gamma} : \gamma \in \omega_1 \}$$
 such that $[S]^{\omega} \in \mathcal{I}$.

- For each $\delta \in \omega_1$, let g_{eta_δ} witness $A_\delta := \{ lpha_\gamma : \gamma \in \delta \} \in \mathcal{I}.$
- Claim: $\langle \{f_{lpha_{\gamma}}: \gamma \in \omega_1\}, \{g_{eta_{\delta}}: \delta \in \omega_1\}
 angle$ is unfilled.
- f_{sup{αγ:γ∈ω1}+1} or g_{sup{βδ}:δ∈ω1}+1</sub> would fill this gap if they existed.
 cf(κ) = cf(λ) = ℵ₁.

$$A \in \mathcal{I} \subseteq [\kappa]^{\omega} \iff \exists \beta \ \forall n \ \{ \alpha \in A : \chi(f_{\alpha}, g_{\beta}) < n \}$$
 is finite

Lemma

Applying the PID to this ideal gives us that $\kappa = \lambda = \aleph_1$.

•
$$S := \{ \alpha_{\gamma} : \gamma \in \omega_1 \}$$
 such that $[S]^{\omega} \in \mathcal{I}$.

- For each $\delta \in \omega_1$, let g_{β_δ} witness $A_\delta := \{\alpha_\gamma : \gamma \in \delta\} \in \mathcal{I}$.
- Claim: $\langle \{f_{\alpha_{\gamma}} : \gamma \in \omega_1\}, \{g_{\beta_{\delta}} : \delta \in \omega_1\} \rangle$ is unfilled.
- f_{sup{αγ:γ∈ω1}+1} or g_{sup{βδ:δ∈ω1}+1} would fill this gap if they existed.
 cf(κ) = cf(λ) = ℵ₁.

$$A \in \mathcal{I} \subseteq [\kappa]^{\omega} \iff \exists \beta \ \forall n \ \{ \alpha \in A : \chi(f_{\alpha}, g_{\beta}) < n \}$$
 is finite

Lemma

Applying the PID to this ideal gives us that $\kappa = \lambda = \aleph_1$.

•
$$S := \{ \alpha_{\gamma} : \gamma \in \omega_1 \}$$
 such that $[S]^{\omega} \in \mathcal{I}$.

- For each $\delta \in \omega_1$, let g_{β_δ} witness $A_\delta := \{\alpha_\gamma : \gamma \in \delta\} \in \mathcal{I}$.
- Claim: $\langle \{f_{\alpha_{\gamma}} : \gamma \in \omega_1\}, \{g_{\beta_{\delta}} : \delta \in \omega_1\} \rangle$ is unfilled.
- f_{sup{αγ:γ∈ω1}+1} or g_{sup{βδ}:δ∈ω1}+1</sub> would fill this gap if they existed.
 cf(κ) = cf(λ) = ℵ₁.

$$A \in \mathcal{I} \subseteq [\kappa]^{\omega} \iff \exists \beta \ \forall n \ \{ \alpha \in A : \chi(f_{\alpha}, g_{\beta}) < n \}$$
 is finite

Lemma

Applying the PID to this ideal gives us that $\kappa = \lambda = \aleph_1$.

•
$$S := \{ \alpha_{\gamma} : \gamma \in \omega_1 \}$$
 such that $[S]^{\omega} \in \mathcal{I}$.

- For each $\delta \in \omega_1$, let g_{β_δ} witness $A_\delta := \{\alpha_\gamma : \gamma \in \delta\} \in \mathcal{I}$.
- Claim: $\langle \{f_{\alpha_{\gamma}} : \gamma \in \omega_1\}, \{g_{\beta_{\delta}} : \delta \in \omega_1\} \rangle$ is unfilled.
- f_{sup{α_γ:γ∈ω₁}+1} or g_{sup{β_δ:δ∈ω₁}+1} would fill this gap if they existed.
 cf(κ) = cf(λ) = ℵ₁.

$$A \in \mathcal{I} \subseteq [\kappa]^{\omega} \iff \exists \beta \ \forall n \ \{ \alpha \in A : \chi(f_{\alpha}, g_{\beta}) < n \}$$
 is finite

Lemma

Applying the PID to this ideal gives us that $\kappa = \lambda = \aleph_1$.

•
$$S := \{ \alpha_{\gamma} : \gamma \in \omega_1 \}$$
 such that $[S]^{\omega} \in \mathcal{I}$.

- For each $\delta \in \omega_1$, let $g_{\beta_{\delta}}$ witness $A_{\delta} := \{\alpha_{\gamma} : \gamma \in \delta\} \in \mathcal{I}$.
- Claim: $\langle \{f_{\alpha_{\gamma}} : \gamma \in \omega_1\}, \{g_{\beta_{\delta}} : \delta \in \omega_1\} \rangle$ is unfilled.
- f_{sup{αγ:γ∈ω1}+1} or g_{sup{βδ}:δ∈ω1}+1</sub> would fill this gap if they existed.
 cf(κ) = cf(λ) = ℵ₁.

$$A \in \mathcal{I} \subseteq [\kappa]^{\omega} \iff \exists \beta \ \forall n \ \{ \alpha \in A : \chi(f_{\alpha}, g_{\beta}) < n \}$$
 is finite

Lemma

Applying the PID to this ideal gives us that $\kappa = \lambda = \aleph_1$.

•
$$S := \{ \alpha_{\gamma} : \gamma \in \omega_1 \}$$
 such that $[S]^{\omega} \in \mathcal{I}$.

- For each $\delta \in \omega_1$, let $g_{\beta_{\delta}}$ witness $A_{\delta} := \{\alpha_{\gamma} : \gamma \in \delta\} \in \mathcal{I}$.
- Claim: $\langle \{f_{\alpha_{\gamma}} : \gamma \in \omega_1\}, \{g_{\beta_{\delta}} : \delta \in \omega_1\} \rangle$ is unfilled.
- f_{sup{αγ:γ∈ω1}+1} or g_{sup{βδ:δ∈ω1}+1} would fill this gap if they existed.
 cf(κ) = cf(λ) = ℵ₁.

$$A \in \mathcal{I} \subseteq [\kappa]^{\omega} \iff \exists \beta \ \forall n \ \{ \alpha \in A : \chi(f_{\alpha}, g_{\beta}) < n \}$$
 is finite

Lemma

Applying the PID to this ideal gives us that $\kappa = \lambda = \aleph_1$.

- $S \subseteq \kappa$ cofinal in κ and orthogonal to \mathcal{I} .
- $f(n) := \sup\{f_{\alpha}(n) : \alpha \in S\}$. (Possibly bounded by g_0).
- There is a β such that f ≮^{*} g_β, Thus for each i ∈ ω there is an n_i > i with g_β(n_i) ≤ f(n_i).
- Then there is some $\alpha_i \in S$ such that $g_\beta(n_i) \leq f_{\alpha_i}(n_i)$.
- Claim: $A := \{\alpha_i : i \in \omega\} \in [S]^{\omega} \cap \mathcal{I}.$
- Contradiction $\Rightarrow \Leftarrow$

$$A \in \mathcal{I} \subseteq [\kappa]^{\omega} \iff \exists \beta \ \forall n \ \{ \alpha \in A : \chi(f_{\alpha}, g_{\beta}) < n \}$$
 is finite

Lemma

Applying the PID to this ideal gives us that $\kappa = \lambda = \aleph_1$.

- $S \subseteq \kappa$ cofinal in κ and orthogonal to \mathcal{I} .
- $f(n) := \sup\{f_{\alpha}(n) : \alpha \in S\}$. (Possibly bounded by g_0).
- There is a β such that $f \not\leq^* g_\beta$, Thus for each $i \in \omega$ there is an $n_i > i$ with $g_\beta(n_i) \leq f(n_i)$.
- Then there is some $\alpha_i \in S$ such that $g_\beta(n_i) \leq f_{\alpha_i}(n_i)$.
- Claim: $A := \{ \alpha_i : i \in \omega \} \in [S]^{\omega} \cap \mathcal{I}.$
- Contradiction $\Rightarrow \Leftarrow$

$$A \in \mathcal{I} \subseteq [\kappa]^{\omega} \iff \exists \beta \ \forall n \ \{ \alpha \in A : \chi(f_{\alpha}, g_{\beta}) < n \}$$
 is finite

Lemma

Applying the PID to this ideal gives us that $\kappa = \lambda = \aleph_1$.

- $S \subseteq \kappa$ cofinal in κ and orthogonal to \mathcal{I} .
- $f(n) := \sup\{f_{\alpha}(n) : \alpha \in S\}$. (Possibly bounded by g_0).
- There is a β such that $f \not\leq^* g_\beta$, Thus for each $i \in \omega$ there is an $n_i > i$ with $g_\beta(n_i) \leq f(n_i)$.
- Then there is some $\alpha_i \in S$ such that $g_\beta(n_i) \leq f_{\alpha_i}(n_i)$.
- Claim: $A := \{ \alpha_i : i \in \omega \} \in [S]^{\omega} \cap \mathcal{I}.$
- Contradiction $\Rightarrow \Leftarrow$

$$A \in \mathcal{I} \subseteq [\kappa]^{\omega} \iff \exists \beta \ \forall n \ \{ \alpha \in A : \chi(f_{\alpha}, g_{\beta}) < n \}$$
 is finite

Lemma

Applying the PID to this ideal gives us that $\kappa = \lambda = \aleph_1$.

- $S \subseteq \kappa$ cofinal in κ and orthogonal to \mathcal{I} .
- $f(n) := \sup\{f_{\alpha}(n) : \alpha \in S\}$. (Possibly bounded by g_0).
- There is a β such that $f \not\leq^* g_\beta$, Thus for each $i \in \omega$ there is an $n_i > i$ with $g_\beta(n_i) \leq f(n_i)$.
- Then there is some $\alpha_i \in S$ such that $g_\beta(n_i) \leq f_{\alpha_i}(n_i)$.
- Claim: $A := \{ \alpha_i : i \in \omega \} \in [S]^{\omega} \cap \mathcal{I}.$
- Contradiction $\Rightarrow \Leftarrow$

$$A \in \mathcal{I} \subseteq [\kappa]^{\omega} \iff \exists \beta \ \forall n \ \{ \alpha \in A : \chi(f_{\alpha}, g_{\beta}) < n \}$$
 is finite

Lemma

Applying the PID to this ideal gives us that $\kappa = \lambda = \aleph_1$.

- $S \subseteq \kappa$ cofinal in κ and orthogonal to \mathcal{I} .
- $f(n) := \sup\{f_{\alpha}(n) : \alpha \in S\}$. (Possibly bounded by g_0).
- There is a β such that $f \not\leq^* g_\beta$, Thus for each $i \in \omega$ there is an $n_i > i$ with $g_\beta(n_i) \leq f(n_i)$.
- Then there is some $\alpha_i \in S$ such that $g_\beta(n_i) \leq f_{\alpha_i}(n_i)$.
- Claim: $A := \{\alpha_i : i \in \omega\} \in [S]^{\omega} \cap \mathcal{I}.$
- Contradiction $\Rightarrow \Leftarrow$

Reminder

$$A \in \mathcal{I} \subseteq [\kappa]^{\omega} \iff \exists \beta \ \forall n \ \{ \alpha \in A : \chi(f_{\alpha}, g_{\beta}) < n \}$$
 is finite

Lemma

Applying the PID to this ideal gives us that $\kappa = \lambda = \aleph_1$.

Proof under the second alternative of PID.

- $S \subseteq \kappa$ cofinal in κ and orthogonal to \mathcal{I} .
- $f(n) := \sup\{f_{\alpha}(n) : \alpha \in S\}$. (Possibly bounded by g_0).
- There is a β such that $f \not\leq^* g_\beta$, Thus for each $i \in \omega$ there is an $n_i > i$ with $g_\beta(n_i) \leq f(n_i)$.
- Then there is some $\alpha_i \in S$ such that $g_\beta(n_i) \leq f_{\alpha_i}(n_i)$.
- Claim: $A := \{\alpha_i : i \in \omega\} \in [S]^{\omega} \cap \mathcal{I}.$
- Contradiction $\Rightarrow \Leftarrow$

Reminder

$$A \in \mathcal{I} \subseteq [\kappa]^{\omega} \iff \exists \beta \ \forall n \ \{ \alpha \in A : \chi(f_{\alpha}, g_{\beta}) < n \}$$
 is finite

Lemma

Applying the PID to this ideal gives us that $\kappa = \lambda = \aleph_1$.

Proof under the second alternative of PID.

- $S \subseteq \kappa$ cofinal in κ and orthogonal to \mathcal{I} .
- $f(n) := \sup\{f_{\alpha}(n) : \alpha \in S\}$. (Possibly bounded by g_0).
- There is a β such that $f \not\leq^* g_\beta$, Thus for each $i \in \omega$ there is an $n_i > i$ with $g_\beta(n_i) \leq f(n_i)$.
- Then there is some $\alpha_i \in S$ such that $g_\beta(n_i) \leq f_{\alpha_i}(n_i)$.
- Claim: $A := \{ \alpha_i : i \in \omega \} \in [S]^{\omega} \cap \mathcal{I}.$
- Contradiction ⇒

Corollary

 $PID \Rightarrow \mathfrak{p} = \mathfrak{t}.$

Proof.

It has long been known that $\mathfrak{p} \leq \mathfrak{t}$.

In the paper "A Comment on $\mathfrak{p} < \mathfrak{t}$ " (2009), Shelah showed that if $\mathfrak{p} < \mathfrak{t}$, then there is an uncountable $\kappa < \mathfrak{p}$ and a (κ, \mathfrak{p}) -gap.

Remark

In 2012 Shelah and Malliaris produced a paper that proves finally that $\mathfrak{p} = \mathfrak{t}$ in ZFC.

Corollary

 $PID \Rightarrow \mathfrak{p} = \mathfrak{t}.$

Proof.

It has long been known that $\mathfrak{p} \leq \mathfrak{t}$.

In the paper "A Comment on $\mathfrak{p} < \mathfrak{t}$ " (2009), Shelah showed that if $\mathfrak{p} < \mathfrak{t}$, then there is an uncountable $\kappa < \mathfrak{p}$ and a (κ, \mathfrak{p}) -gap.

Remark

In 2012 Shelah and Malliaris produced a paper that proves finally that $\mathfrak{p} = \mathfrak{t}$ in ZFC.

Corollary

 $PID \Rightarrow \mathfrak{p} = \mathfrak{t}.$

Proof.

It has long been known that $\mathfrak{p} \leq \mathfrak{t}$.

In the paper "A Comment on $\mathfrak{p} < \mathfrak{t}$ " (2009), Shelah showed that if $\mathfrak{p} < \mathfrak{t}$, then there is an uncountable $\kappa < \mathfrak{p}$ and a (κ, \mathfrak{p}) -gap.

Remark

In 2012 Shelah and Malliaris produced a paper that proves finally that $\mathfrak{p} = \mathfrak{t}$ in ZFC.

PID and \mathfrak{b}

э.

・ロト ・ 日 ト ・ 田 ト ・

We know already:

- $\mathfrak{p} \leq \mathfrak{t} \leq \mathfrak{b}$
- $\mathfrak{p} = \aleph_1 \Rightarrow \mathfrak{p} = \mathfrak{t}.$

So even without gaps, we could have known that $PID \Rightarrow \mathfrak{p} = \mathfrak{t}$ if only we knew that $PID \Rightarrow \mathfrak{b} \leq \aleph_2$.

- For $g \in \omega^{\omega}$, let (< g) denote the set $\{f \in \omega^{\omega} : f <^{*} g\}$
- We say A ⊆ (< g) is *near* g if for every n, the set {f ∈ A : χ(f,g) < n} is finite.

We know already:

• $\mathfrak{p} \leq \mathfrak{t} \leq \mathfrak{b}$

• $\mathfrak{p} = \aleph_1 \Rightarrow \mathfrak{p} = \mathfrak{t}.$

So even without gaps, we could have known that $PID \Rightarrow \mathfrak{p} = \mathfrak{t}$ if only we knew that $PID \Rightarrow \mathfrak{b} \leq \aleph_2$.

- For $g \in \omega^{\omega}$, let (< g) denote the set $\{f \in \omega^{\omega} : f <^{*} g\}$
- We say A ⊆ (< g) is *near* g if for every n, the set {f ∈ A : χ(f,g) < n} is finite.

We know already:

- $\mathfrak{p} \leq \mathfrak{t} \leq \mathfrak{b}$
- $\mathfrak{p} = \aleph_1 \Rightarrow \mathfrak{p} = \mathfrak{t}.$

So even without gaps, we could have known that $PID \Rightarrow \mathfrak{p} = \mathfrak{t}$ if only we knew that $PID \Rightarrow \mathfrak{b} \leq \aleph_2$.

- For $g \in \omega^{\omega}$, let (< g) denote the set $\{f \in \omega^{\omega} : f <^{*} g\}$
- We say A ⊆ (< g) is *near* g if for every n, the set {f ∈ A : χ(f,g) < n} is finite.

We know already:

• $\mathfrak{p} \leq \mathfrak{t} \leq \mathfrak{b}$

•
$$\mathfrak{p} = \aleph_1 \Rightarrow \mathfrak{p} = \mathfrak{t}.$$

So even without gaps, we could have known that $PID \Rightarrow \mathfrak{p} = \mathfrak{t}$ if only we knew that $PID \Rightarrow \mathfrak{b} \leq \aleph_2$.

- For $g \in \omega^{\omega}$, let (< g) denote the set $\{f \in \omega^{\omega} : f <^{*} g\}$
- We say $A \subseteq (< g)$ is *near* g if for every n, the set $\{f \in A : \chi(f,g) < n\}$ is finite.

We know already:

• $\mathfrak{p} \leq \mathfrak{t} \leq \mathfrak{b}$

•
$$\mathfrak{p} = \aleph_1 \Rightarrow \mathfrak{p} = \mathfrak{t}.$$

So even without gaps, we could have known that $PID \Rightarrow \mathfrak{p} = \mathfrak{t}$ if only we knew that $PID \Rightarrow \mathfrak{b} \leq \aleph_2$.

- For $g \in \omega^\omega$, let (< g) denote the set $\{f \in \omega^\omega : f <^* g\}$
- We say $A \subseteq (< g)$ is *near* g if for every n, the set $\{f \in A : \chi(f,g) < n\}$ is finite.

Definition

For $g \in \omega^{\omega}$ let \mathcal{I}_g be the collection of all countable subsets of (< g) that are near g.

Theorem

 \mathcal{I}_g is a P-ideal.

Proof.

For $\{A_i : i \in \omega\} \subseteq \mathcal{I}_g$, the set

$$A := \bigcup_{i \in \omega} (A_i \setminus \{f \in A_i : \chi(f,g) < i\})$$

is a witness to this fact.

Definition

For $g \in \omega^{\omega}$ let \mathcal{I}_g be the collection of all countable subsets of (< g) that are near g.

Theorem

 \mathcal{I}_{g} is a *P*-ideal.

$$A := \bigcup_{i \in \omega} (A_i \setminus \{f \in A_i : \chi(f,g) < i\})$$

- ∢ ⊢⊒ →

→ ∃ →

Definition

For $g \in \omega^{\omega}$ let \mathcal{I}_g be the collection of all countable subsets of (< g) that are near g.

Theorem

 \mathcal{I}_{g} is a P-ideal.

Proof.

For $\{A_i : i \in \omega\} \subseteq \mathcal{I}_g$, the set

$$A := \bigcup_{i \in \omega} (A_i \setminus \{f \in A_i : \chi(f,g) < i\})$$

is a witness to this fact.

- ₹ 🕨 🕨

Definition (A P-ideal \mathcal{I} on ω_2 if $\mathfrak{b} > \omega_2$)

Let us assume now that $\mathfrak{b} > \omega_2$, in which case, we can find a <*-increasing sequence of functions $\langle f_{\xi} : \xi \in \omega_2 \rangle$. Now we say $X \in \mathcal{I}$ if X is countable, and for some $\nu \in \omega_2$, for all $\mu \ge \nu$ we have $\{f_{\xi} : \xi \in X\} \in \mathcal{I}_{f_{\mu}}$.

Lemma

 \mathcal{I} is a P-ideal on ω_2 .

Proof.

For $\{A_i : i \in \omega\} \subseteq \mathcal{I}$, there is a fixed $\nu \in \omega_2$ such that for every $\mu \ge \nu$, and every $i \in \omega$, $\{f_{\xi} : \xi \in A_i\} \in \mathcal{I}_{f_{\mu}}$. Define now the functions $h_{\mu}(j) := \{\alpha \in A_j : \chi(f_{\alpha}, f_{\mu}) \le j\}$ (a finite subset of the countable set $\bigcup_{i \in \omega} A_i$). Since $\mathfrak{b} > \omega_2$ there is some function $h : \omega \to [\bigcup_{i \in \omega} A_i]^{<\omega}$ that "dominates" all of the h_{ξ} . Then $A := \bigcup_{i \in \omega} (A_i \setminus h(i))$ is a witness to the fact that \mathcal{I} is a P-ideal.

< ロ > < 同 > < 三 > < 三

Definition (A P-ideal \mathcal{I} on ω_2 if $\mathfrak{b} > \omega_2$)

Let us assume now that $\mathfrak{b} > \omega_2$, in which case, we can find a <*-increasing sequence of functions $\langle f_{\xi} : \xi \in \omega_2 \rangle$. Now we say $X \in \mathcal{I}$ if X is countable, and for some $\nu \in \omega_2$, for all $\mu \ge \nu$ we have $\{f_{\xi} : \xi \in X\} \in \mathcal{I}_{f_{\mu}}$.

Lemma

 \mathcal{I} is a P-ideal on ω_2 .

Proof.

For $\{A_i : i \in \omega\} \subseteq \mathcal{I}$, there is a fixed $\nu \in \omega_2$ such that for every $\mu \ge \nu$, and every $i \in \omega$, $\{f_{\xi} : \xi \in A_i\} \in \mathcal{I}_{f_{\mu}}$. Define now the functions $h_{\mu}(j) := \{\alpha \in A_j : \chi(f_{\alpha}, f_{\mu}) \le j\}$ (a finite subset of the countable set $\bigcup_{i \in \omega} A_i$). Since $\mathfrak{b} > \omega_2$ there is some function $h : \omega \to [\bigcup_{i \in \omega} A_i]^{<\omega}$ that "dominates" all of the h_{ξ} . Then $A := \bigcup_{i \in \omega} (A_i \setminus h(i))$ is a witness to the fact that \mathcal{I} is a P-ideal.

・ロト ・回ト ・ヨト ・

Definition (A P-ideal \mathcal{I} on ω_2 if $\mathfrak{b} > \omega_2$)

Let us assume now that $\mathfrak{b} > \omega_2$, in which case, we can find a <*-increasing sequence of functions $\langle f_{\xi} : \xi \in \omega_2 \rangle$. Now we say $X \in \mathcal{I}$ if X is countable, and for some $\nu \in \omega_2$, for all $\mu \ge \nu$ we have $\{f_{\xi} : \xi \in X\} \in \mathcal{I}_{f_{\mu}}$.

Lemma

 \mathcal{I} is a P-ideal on ω_2 .

Proof.

For $\{A_i : i \in \omega\} \subseteq \mathcal{I}$, there is a fixed $\nu \in \omega_2$ such that for every $\mu \ge \nu$, and every $i \in \omega$, $\{f_{\xi} : \xi \in A_i\} \in \mathcal{I}_{f_{\mu}}$. Define now the functions $h_{\mu}(j) := \{\alpha \in A_j : \chi(f_{\alpha}, f_{\mu}) \le j\}$ (a finite subset of the countable set $\bigcup_{i \in \omega} A_i$). Since $\mathfrak{b} > \omega_2$ there is some function $h : \omega \to [\bigcup_{i \in \omega} A_i]^{<\omega}$ that "dominates" all of the h_{ξ} . Then $A := \bigcup_{i \in \omega} (A_i \setminus h(i))$ is a witness to the fact that \mathcal{I} is a P-ideal.

< 行

Theorem (Todorcevic)

 $PID \Rightarrow \mathfrak{b} \leq \omega_2.$

Proof (part 1).

Using the ideal \mathcal{I} previously described, assume there is some uncontable $A \subseteq \omega_2$ with $[A]^{\omega} \subseteq \mathcal{I}$. (We may assume that A has order type ω_1 .) Then we can find a single $\nu < \omega_2$ such that every initial segment of $A' \subseteq A$ is in $\mathcal{I}_{f_{\nu}}$. However, we can find an uncountable set $B \subseteq A$ such that for all $\alpha \in B$, $\chi(f_{\alpha}, f_{\nu})$ is constant. But now take any initial segment $A' \subseteq A$ such that $|B \cap A'| = \omega$. Clearly then A' is not near f_{ν} , creating a contradiction.

Theorem (Todorcevic)

 $PID \Rightarrow \mathfrak{b} \leq \omega_2.$

Proof (part 1).

Using the ideal \mathcal{I} previously described, assume there is some uncontable $A \subseteq \omega_2$ with $[A]^{\omega} \subseteq \mathcal{I}$. (We may assume that A has order type ω_1 .) Then we can find a single $\nu < \omega_2$ such that every initial segment of $A' \subseteq A$ is in $\mathcal{I}_{f_{\nu}}$. However, we can find an uncountable set $B \subseteq A$ such that for all $\alpha \in B$, $\chi(f_{\alpha}, f_{\nu})$ is constant. But now take any initial segment $A' \subseteq A$ such that $|B \cap A'| = \omega$. Clearly then A' is not near f_{ν} , creating a contradiction.

Proof (part 2).

Otherwise, ω_2 is the countable union of sets orthogonal to \mathcal{I} . So in particular there is a cofinal $E \subseteq \omega_2$ orthogonal to \mathcal{I} .

Choose some $g \in \omega^{\omega}$ such that $f_{\xi} \leq^* g$ for all $\xi \in E$. If the set $B := \{n \in \omega : \sup_{\xi \in E} f_{\xi}(n) = \omega\}$ was infinite, choose for each $n \in B$ a $\xi_n \in \omega_2$ such that $g(n) < f_{\xi_n}(n)$. Like before, $\{f_{\xi_n} : n \in \omega\} \in \mathcal{I}$.

So *B* is finite, and thus for *n* large enough $s(n) := \sup_{\xi \in E} f_{\xi}(n)$ is finite. Define now s'(n) := s(n) - 1. Notice that we have for each $\xi \in E$ that $f_{\xi} <^* s'$. We can still however find for each *n* (large enough), a $\xi_n \in E$ such that $s'(n) < f_{\xi_n}(n)$. Again, as before, $\{f_{\xi_n} : n \in \omega\} \in \mathcal{I}$.

Forcing the PID

< A > < 3

Definition (Forcing the PID (Todorcevic 1999))

Let \mathcal{I} be a P-ideal on some ordinal θ such that θ cannot be decomposed into countably many sets orthogonal to \mathcal{I} , but every smaller ordinal can. Then we define the forcing poset $\mathbb{P} = \mathbb{P}_{\mathcal{I}}$ by the following: $p \in \mathbb{P}$ when $p = \langle x_p, \mathfrak{X}_p \rangle$ and

• x_p is a countable subset of θ , and

• \mathfrak{X}_p is a countable collection of cofinal subsets of $\langle [\mathcal{I}]^{\omega}, \subseteq \rangle$.

Now for each $a \in [\mathcal{I}]^{\omega}$, choose a fixed $m_a \in \mathcal{I}$ such that $b \subseteq^* m_a$ for every $b \in A$. Then we say $q \leq p$ (q extends p) when

- *x_q* end-extends *x_p*
- $\mathfrak{X}_p \subseteq \mathfrak{X}_q$, and
- for every $X \in \mathfrak{X}_p$, $\{a \in X : x_q \setminus x_p \subseteq m_a\} \in \mathfrak{X}_q$ (and is cofinal in $[\mathcal{I}]^{\omega}$).

(日) (同) (三) (三)

This forcing is proper and forces that there is an uncountable subset A of θ such that $[A]^{\omega} \subseteq \mathcal{I}$. It also adds no new reals, even when iterated with countable support.

Implications

- $PFA \Rightarrow PID$
- If there is a supercompact cardinal κ, we can iterate over κ to force both the PID and the GCH.
- PID_{ω_1} can be forced by only iterating ω_2 many posets.

This forcing is proper and forces that there is an uncountable subset A of θ such that $[A]^{\omega} \subseteq \mathcal{I}$. It also adds no new reals, even when iterated with countable support.

Implications

- $PFA \Rightarrow PID$
- If there is a supercompact cardinal κ, we can iterate over κ to force both the PID and the GCH.
- PID_{ω_1} can be forced by only iterating ω_2 many posets.

• Using a supercompact cardinal, force PID and $\mathfrak{b} < \mathfrak{d}$.

 More generally, force PID with all configurations of Cichon's diagram. (where c = ℵ₁)

Open Questions

- is 0 bounded?
- is c bounded?

- Using a supercompact cardinal, force PID and $\mathfrak{b} < \mathfrak{d}$.
- More generally, force PID with all configurations of Cichon's diagram. (where c = ℵ₁)

Open Questions

- is ∂ bounded?
- is c bounded?

- Using a supercompact cardinal, force PID and $\mathfrak{b} < \mathfrak{d}$.
- More generally, force PID with all configurations of Cichon's diagram. (where c = ℵ₁)

Open Questions

- is 0 bounded?
- is c bounded?

- Using a supercompact cardinal, force PID and $\mathfrak{b} < \mathfrak{d}$.
- More generally, force PID with all configurations of Cichon's diagram. (where c = ℵ₁)

Open Questions

- is ∂ bounded?
- is c bounded?

- Using a supercompact cardinal, force PID and $\mathfrak{b} < \mathfrak{d}$.
- More generally, force PID with all configurations of Cichon's diagram. (where c = ℵ₁)

Open Questions

- is o bounded?
- is c bounded?